43 research outputs found

    Synthetic Random Flux Model in a periodically-driven optical lattice

    Full text link
    We propose a realization of a synthetic Random Flux Model in a two-dimensional optical lattice. Starting from Bose-Hubbard Hamiltonian for two atom species we show how to use fast-periodic modulation of the system parameters to construct random gauge field. We investigate the transport properties of such a system and describe the impact of time-reversal symmetry breaking and correlations in disorder on Anderson localization length.Comment: 6 pages, 4 figure

    Role of correlations and off-diagonal terms in binary disordered one dimensional systems

    Get PDF
    We investigate one dimensional tight binding model in the presence of a correlated binary disorder. The disorder is due to the interaction of particles with heavy immobile other species. Off-diagonal disorder is created by means of a fast periodic modulation of interspecies interaction. The method based on transfer matrix techniques allows us to calculate the energies of extended modes in the correlated binary disorder. We focus on NN-mer correlations and regain known results for the case of purely diagonal disorder. For off-diagonal disorder we find resonant energies. We discuss ambiguous properties of those states and compare analytical results with numerical calculations. Separately we describe a special case of the dual random dimer model.Comment: 6 pages, 4 figure

    Controlling disorder with periodically modulated interactions

    Full text link
    We investigate a celebrated problem of one dimensional tight binding model in the presence of disorder leading to Anderson localization from a novel perspective. A binary disorder is assumed to be created by immobile heavy particles for the motion of the lighter, mobile species in the limit of no interaction between mobile particles. Fast periodic modulations of interspecies interactions allow us to produce an effective model with small diagonal and large off-diagonal disorder unexplored in cold atoms experiments. We present an expression for an approximate Anderson localization length and verify the existence of the well known extended resonant mode and analyze the influence of nonzero next-nearest neighbor hopping terms. We point out that periodic modulation of interaction allow disorder to work as a tunable band-pass filter for momenta.Comment: version close to published vesio

    Implication de polymorphismes génétiques dans la prédisposition des humains à l'insuffisance cardiaque et leur réponse au traitement pharmacothérapeutique

    Full text link
    Le système cardiovasculaire est composé d'un cœur qui pompe régulièrement le sang à travers des artères afin d'alimenter tous les tissus corporels en oxygène et nutriments qui leur sont nécessaires. Une caractéristique particulière de ce système est son aspect fermé, où le sang fait un cycle constant commençant par le ventricule gauche, allant vers tous les tissus corporels, revenant vers le cœur et le ventricule droit, étant propulsé vers la circulation pulmonaire en retournant au ventricule gauche. L'insuffisance cardiaque est alors une incapacité du cœur à effectuer sa tâche de pomper le sang efficacement. Une série d'ajustements sont alors enclenchés pour rétablir un débit sanguin adéquat; cette réponse systémique est principalement menée par le système rénine-angiotensine-aldostérone ainsi que par le système adrénergique. À court terme, le flot sanguin est rétabli et le métabolisme corporel continue comme si rien n'était, de telle sorte que, souvent ce stade passe inaperçu et les individus qui en sont affectés sont asymptomatiques. Cependant, le cœur doit alors fournir un effort constant supérieur et si la cause n'est pas résolue, la condition cardiaque se dégradera encore plus. Si tel est le cas, pour s'ajuster à cette nouvelle réalité, le cœur, comme tout muscle, deviendra plus massif et changera de conformation afin de répondre à sa nouvelle charge de travail. Cette transformation cardiaque est communément connue sous le terme de remodelage. Par contre, le remodelage cardiaque est délétère à long terme et entrave encore plus le cœur à bien effectuer sa tâche. Au fur et à mesure que la fonction cardiaque décline, les systèmes compensatoires persistent et s'intensifient; il y a alors établissement d'un cercle vicieux destructeur qui ne peut être renversé que par une transplantation cardiaque. Entre temps, des thérapies inhibant le système rénine-angiotensine-aldostérone et le système adrénergique se sont avérés très efficaces pour prolonger la survie, diminuer la mortalité, réduire les hospitalisations ainsi que soulager la symptomatologie associée à l'insuffisance cardiaque. Par contre, ces régimes thérapeutiques ne semblent pas induire une réponse positive chez tous les patients, de sorte que certains n'en retirent pas de bénéfices tangibles, tandis que d'autres éprouvent plusieurs difficultés à les tolérer. Suite à des analyses rétrospectives, surtout en comparant la réponse thérapeutique entre des populations de diverses ethnies, les variations génétiques, particulièrement les polymorphismes ayant le potentiel de moduler le mécanisme d'action de la pharmacothérapie, furent proposés comme responsables de cette variabilité dans la réponse aux médicaments. Certains ont aussi proposé que certains polymorphismes pourraient être considérés comme des facteurs de risque prédisposant à l'insuffisance cardiaque ou coupables de moduler sa progression en tant que facteurs aggravants ou atténuants. Avec de telles hypothèses proposées, plusieurs associations génétiques furent étudiées en commençant par des gènes directement impliqués dans la pathogénèse de cette maladie. Dans le cadre de cette thèse, nous allons revoir les diverses données disponibles dans la littérature au sujet de l'influence que peuvent avoir les divers polymorphismes impliqués dans la prédisposition, la progression et la pharmacogénétique de l'insuffisance cardiaque.The cardiovascular system is composed of a heart that regularly pumps blood through the arteries in order to meet the peripheral tissues' demand for oxygen and nutrients. One particularity of this system is its closed aspect where the blood constantly travels in a circular fashion: starting from the left ventricle it is thrusted towards the body tissues, returns to the right side of the heart, is propelled through the pulmonary circulation by the right ventricle and returns again to its starting point, the left ventricle. Heart failure is then the incapacity of the heart to perform its task of appropriately pumping blood. A series of adjustments are then put in place in order to restore an adequate blood flow; this systemic response is mainly lead by the renin-angiotensin-aldosterone and the adrenergic systems. In the short term, the proper blood flow is re-established and the body's metabolism is mainly not affected. This initial stage goes frequently unnoticed and the affected individuals are essentially asymptomatic. However, the heart now needs to deliver a constantly elevated effort and if the precipitating cause is not resolved, the cardiac condition will degrade even further. If this is the case, to adjust itself to this new state, as would any muscle, the heart will become more massive and change its conformation in order to respond to this new workload. This transformation of the heart is commonly referred to as remodelling. However, in the long run, this cardiac remodelling is detrimental and hinders even further the ability of the heart to effectively perform its task. As the cardiac function declines, the compensatory systems persist and intensify; a destructive vicious cycle is then established which will ultimately lead to a heart transplantation or death. In the meantime, therapies inhibiting the renin-angiotensin-aldosterone and the adrenergic systems were found to be very effective in prolonging lifespan, diminishing mortality, reducing hospitalisations and relieving some of the symptomatology associated with heart failure. However, these therapeutic strategies do not seem to induce a positive response in all, thus some patients do not derive any tangible benefits, whereas others experience many difficulties in tolerating them. Following retrospective analysis, especially when comparing the therapeutic response between different ethnic populations, the genetic variations, particularly polymorphisms having the potential to modulate the mechanism of action of pharmacotherapy, were put forward as culprits of this variability in response to medications. Furthermore, some researchers have also suggested that certain polymorphisms might be considered as risk factors predisposing towards heart failure or capable of modulating its progression, whether they act as aggravating or attenuation factors. With such hypothesis, many genetic associations were studied, many starting with genes directly implicated in the pathogenesis of this disease. Within the framework of this thesis, we will review the current data available in the literature as it pertains to the influence that various polymorphisms can have on the predisposition, the progression and the pharmacogenetics of heart failure

    Phonon-assisted coherent transport of excitations in Rydberg-dressed atom arrays

    Get PDF
    Polarons, which arise from the self-trapping interaction between electrons and lattice distortions in a solid, have been known and extensively investigated for nearly a century. Nevertheless, the study of polarons continues to be an active and evolving field, with ongoing advancements in both fundamental understanding and practical applications. Here, we present a microscopic model that exhibits a diverse range of dynamic behavior, arising from the intricate interplay between two excitation-phonon coupling terms. The derivation of the model is based on an experimentally feasible Rydberg-dressed system with dipole-dipole interactions, making it a promising candidate for realization in a Rydberg atoms quantum simulator. Remarkably, our analysis reveals a growing asymmetry in Bloch oscillations, leading to a macroscopic transport of non-spreading excitations under a constant force. Moreover, we compare the behavior of excitations, when coupled to either acoustic or optical phonons, and demonstrate the robustness of our findings against on-site random potential. Overall, this work contributes to the understanding of polaron dynamics with their potential applications in coherent quantum transport and offers valuable insights for research on Rydberg-based quantum systems

    Phonon-assisted coherent transport of excitations in Rydberg-dressed atom arrays

    Get PDF
    Polarons, which arise from the self-trapping interaction between electrons and lattice distortions in a solid, have been known and extensively investigated for nearly a century. Nevertheless, the study of polarons continues to be an active and evolving field, with ongoing advancements in both fundamental understanding and practical applications. Here, we present a microscopic model that exhibits a diverse range of dynamic behavior, arising from the intricate interplay between two excitation-phonon coupling terms. The derivation of the model is based on an experimentally feasible Rydberg-dressed system with dipole-dipole interactions, making it a promising candidate for realization in a Rydberg atoms quantum simulator. Remarkably, our analysis reveals a growing asymmetry in Bloch oscillations, leading to a macroscopic transport of non-spreading excitations under a constant force. Moreover, we compare the behavior of excitations, when coupled to either acoustic or optical phonons, and demonstrate the robustness of our findings against on-site random potential. Overall, this work contributes to the understanding of polaron dynamics with their potential applications in coherent quantum transport and offers valuable insights for research on Rydberg-based quantum systems.Comment: 6 figure

    Many-body Anderson localization in one dimensional systems

    Get PDF
    We show, using quasi-exact numerical simulations, that Anderson localization of one-dimensional particles in a disordered potential survives in the presence of attractive interaction between particles. The localization length of the composite particle can be computed analytically for weak disorder and is in good agreement with the quasi-exact numerical observations using Time Evolving Block Decimation. Our approach allows for simulation of the entire experiment including the final measurement of all atom positions.Comment: 12pp, 5 fig, version accepted in NJ

    The Imbalance in Serum Concentration of Th-1- and Th-2-Derived Chemokines as One of the Factors Involved in Pathogenesis of Atopic Dermatitis

    Get PDF
    Atopic dermatitis (AD) is an inflammatory skin disease in which pathogenesis chemokines are partially involved. The aim of the paper was to assess the serum level of CXCL-9, CXCL-10, CXCL-11, CXCL-12, CCL-17, CCL-20, CCL-21, CCL-22, CCL-27, and IL-18 chosen in AD patients by ELISA assay. Forty patients (mean age 11.4 years old) with AD and 50 healthy controls were enrolled into the study. The patients and controls were divided into two age categories: under 10 years old (Group 1 and Control 1) and over 10 years old (Group 2 and Control 2). Significantly lower serum concentration of CXCL-9, CXCL-10, CCL-17, and IL-18 and higher concentration of CXCL-12 and CCL-27 were found in Group 1 when compared to Control 1. In Group 2 serum concentration of CXCL-12, CCL-17, CCL-22 was higher than in Control 2. The obtained results indicate the imbalance in chemokine serum levels in AD what suggests their role in the disease pathogenesis

    Early divergence, broad distribution, and high diversity of animal chitin synthases

    Get PDF
    Even though chitin is one of themost abundant biopolymers in nature, current knowledge on chitin formation is largely based only on data from fungi and insects. This study reveals unanticipated broad taxonomic distribution and extensive diversification of chitin synthases (CSs) in Metazoa, shedding newlight on the relevance of chitin in animals and suggesting unforeseen complexity of chitin synthesis in many groups. We uncovered robust orthologs to insect type CSs in several representatives of deuterostomes, which generally are not thought to possess chitin. This suggests a broader distribution and function of chitin in this branch of the animal kingdom. We characterize a new CS type present not only in basal metazoans such as sponges and cnidarians but also in several bilaterian representatives. Themost extensive diversification of CSs took place during emergence of lophotrochozoans, the third large group of protostomes next to arthropods and nematodes, resulting in coexistence of up to ten CS paralogs inmolluscs. Independent fusion to different kinds of myosinmotor domains in fungi and lophotrochozoans points toward high relevance of CS interaction with the cytoskeleton for fine-tuned chitin secretion. Given the fundamental role that chitin plays in themorphology of many animals, the here presented CS diversification revealsmany evolutionary complexities. Our findings strongly suggest a very broad andmultifarious occurrence of chitin and question an ancestral role as cuticular component. The molecular mechanisms underlying regulation of animal chitin synthesis are most likely far more complex and diverse than existing data from insects suggest
    corecore